Design Models for
Computer-Human
interfaces

Donald R. Gentner omputer-human interface design has been recognized as a distinct
Sun Microsystems field for only a little more than a decade, but the design of inter-

faces to control mechanical devices has a much longer history. The
Jonathan Grudin interface-design models used in these mechanical systems play similar
University of California, Irvine roles in computer systems, despite the obvious differences between the

two types of systems.

There are many ways to control a given mechanism. Whether con-
sciously or unconsciously, every interface designer chooses a model that
forms the basis for how the mechanism is controlled. Two principal
approaches are the engineering model and the user-task model.

Suppose you want to adjust the flow and temperature of water emerg-
ing from a faucet. From an engineering standpoint, the problem is to adjust
the flow of hot water and cold water and then combine the streams to pro-
duce a mixture with the desired temperature and flow rate. This engi-
neering model has been mapped directly to the user interface of the faucet
in Figure la—one knob is attached to the hot water valve; the other to the
cold water valve.

In contrast, the interface of the faucet in Figure 1b is based on a user-
task model—moving the handle up or down controls the flow and mov-
ing the handle left or right controls the temperature. Clever mechanical
design converts these movements into valve operation and lets the user
focus on the task.

There is no “best” way to design a user interface, however. Interface
designers must be aware that a user interface can be based on any of sev-
eral models, that each model has its advantages, and that their job is to
choose the approach most suitable for the project at hand. In this article,
we examine the models underlying computer-human interface designs
by considering a wide variety of systems, including many from areas out-
side of computing. These noncomputer examples can be instructive
because they are simpler and thus clearer. They also provide some help-
ful detachment and perspective for those of us who are immersed in com-
puters.

CORTRASTING APPROACHES

Radios provide a simple example of the contrast between interfaces
based on engineering models and user-task models. Radio stations broad-
cast at different frequencies. Every radio receives all these signals, but

Human interfaces are a also has a resonant circuit that is adjusted to a particular frequency. Many
radio interfaces are concretely based on this engineering model. To select

Rorschach test for designers— astation, the user simply turns a knob attached to the variable capacitor
in the resonant circuit. The knob is calibrated with numbers that corre-

their inner views and biases spond to the resonant frequency of the tuned circuit (such as 550 kHz).

Other radios have a push-button interface. Once a push-button radio is
are unconsciously reflected in programmed, users can select a station by pushing the corresponding but-
ton. The user’s intention to listen to a particular station maps directly into

the types of user interfaces the press of the appropriate button. This interface better reflects the user’s
model of the task, but it provides access to only selected stations.
they construct. The first electronic hand-held calculator, the Hewlett-Packard HP-35,

Computer 0018-9162/96/$5.00 © 1996 IEEE

also had an interface that directly mirrored
the underlying engineering model, in this
case a stack architecture. To add 27 and 56,
for example, the user pressed “27 ENTER”
(pushing 27 onto the stack), then “56
ENTER” (pushing 56 onto the stack), and
then “+” (adding the top two numbers on
the stack). Calculators that use this reverse
Polish notation still have a loyal following,
but most calculators today use algebraic
notation, so users can enter the more con-
ventional sequence, “27 + 56 =,” even
though the calculator may still implement
the operations with a stack architecture.
Figure 2a shows an example of a pro-
grammable remote control for home
audio-video equipment that must have
seemed perfect to its designers, a group of
brilliant computer hardware engineers
who were designing their ideal controller.
The Core remote control could be pro-
grammed to store up to 16 “pages,” each
containing 16 command sequences. The
hexadecimal nature of the underlying
algorithm shows through in the keys
labeled O to F. Even the typeface used to
label the keys is based on a 7-segment LED
display. By contrast, the programmable
remote control shown in Figure 2b has
keys labeled with typical user-task terms,
such as VOLUME, CHANNEL, and STOP.

Engineering model

Asyoumight expect, basing an interface
on the engineering model has the greatest
benefit for engineers and developers. After
all, if your task is engineering, the task
modelis essentially the engineering model!
Solutions based on the engineering model
can be simple and elegant.

In addition, just as the tuning dial lets
you access all radio stations, being able to
access a system’s full functionality helps
developers debug and fine-tune it. A sys-
tem used primarily by engineers and hob-
byists might also need to provide this
complete level of control.

Systems with interfaces that reflect the
underlying architecture can be easier for
the engineer or knowledgeable user to
troubleshoot, maintain, adapt, and en-
hance. Such interfaces are especially
important if the system is used in a wide
variety of environments. If most users will
eventually need to access the full func-
tionality of the system, it may be better to
begin introducing them to the engineer-
ing model at the outset. And if the system
malfunctions and the interface has pro-
vided users with a good model of the
underlying mechanism, problems will be
easier to diagnose, repair, or work around.

(a)

Figure 1. Two designs for kitchen faucets. (a) The user interface
for this faucet is based on an engineering model—the faucet han-
dles directly control the hot and cold water flows. (b) The
interface for this faucet is based on a user-task model—moving
the handle up and down controls the combined flow rate;
moving it from side to side controls the temperature.

~ UNIVERSAL RENOTE

PLAY FORWA

YOLUME

RECORD . STOP PAUSE

Figure 2. (a) A remote control device from Cloud 9 directly
reflects the engineering model, with buttons labeled with the
hexidecimal code 0-F. (b) The more familiar remote-control inter-
face is labeled with user tasks (rewind, play, TV/VCR).

June 1996

The Apollo astronauts demanded and received more
access to the on-board computers and software that con-
trolled their flights. This access proved crucial in cases of
system malfunction.

User-task model

Basing an interface on the users’ task provides a com-
plementary set of user benefits. Users already have a
model of the task, so an interface based on the engineer-
ing model forces the user to translate between two mod-
els. A successful task-based interface would let them work
with a single model.

The primary benefit of the user-task model is faster,
more effective learning. Operations that users must per-
form should be directly accessible in the interface, as with
a push-button radio. An interface built with a sense of the
task should also enable very efficient use of a system by
experienced users, through appropriate forms of naviga-
tion, optimal arrangement of features, provision of useful
shortcuts, effective help on advanced features, and so
forth.

Atask-based interface can guard against errors that are
particularly likely or costly. For example, it can prevent
users from overwriting important parts of the memory.
Similarly, an interface based on the task model can pro-
mote good policy, as in text processors that remove mul-
tiple spaces between words or sentences. The drawback
is that supporting an additional user-task model adds to
the cost and complexity of development.

Selecting an approach

Both approaches have strong advocates. Some argue
that users should be introduced to the engineering model
from the beginning because they will inevitably have to
deal with the underlying system. Others argue that the
optimal interface is always one that directly corresponds
to a user-task model. Neither extreme position seems
viable today.

Higher level models can be very successful. Graphical
interfaces are not based on engineering models and gener-
ally strive to hide the underlying mechanism. Many users
of desktop interfaces, like Windows, that run on traditional
operating systems, like MS-DOS, find no reason to leave the
desktop. The growing number of users who are basically
unaware of or indifferent to system mechanisms is fueling
amovement toward interfaces based on user-task models.

But neither is it always correct to base the interface on
user-task models. Users’ tasks have often been shaped by
the tools they have used in the past, and blindly adapting
an interface to an existing task can lock users into obso-
lete behavior. Even when tasks are nominally the same,
differences among people and work situations mean that
one user-task model will not fit everyone. Thus, modeling
the interface closely on a single user task can restrict the
range of settings for which the application is well-suited.
Auser might be unable to perform a task that the designer
had not anticipated, even though the machine is fully
capable of performing the new task. For example, we once
used a convenient viewer for reading Usenet messages that
provided no way to go back and reread an old message,
even though the message was still on the news server.

Good interface design requires a balance between con-

Computer

forming to the machine mechanism and conforming to
the users’ conception of the task. Slavishly imitating the
way the task was performed in the past can be a bad idea
because that performance was shaped by an earlier gen-
eration of tools. Over the long term, a new technology
must find the proper balance between forcing users to
accommodate in order to exploit the strengths of the new
technology and adapting the technology to the users’ pre-
existing model of a task. This challenge is particularly rel-
evant to computer interface designers. A computer’s
adaptability places relatively few restrictions on the inter-
face, and itis thus relatively easy to simulate the previous
technology.

HISTORICAL EVOLUTIOR

The engineering and user-task models are not fixed.
Technical innovation produces major changes in the sys- '
tem mechanism through expanded hardware capabilities,
novel input and output modes, and new software. At the
same time, users’ work environments and tasks evolve to
fit the available tools. The evolution of the interface tracks
acompromise between the changing engineering and task
models, producing a loosely coupled coevolution among
the mechanism, interface, and task, driven by both tech-
nological and environmental change.

Early interfaces

The first interfaces for a radically new technology tend
to be closely tied to the engineering model because that is
the easiest to implement and because early users are usu-
ally technically oriented anyway. The first computers were
programmed by plugging wires into large patch panels to
directly alter the electrical circuits. Stored-program com-
puters were initially programmed in machine language.
Only later, with the introduction of high-level languages,
were programmers able to work with more familiar math-
ematical and logical constructs. Although high-level pro-
gramming languages and task-based applications had
been developed in the meantime for mainframes, history
repeated itself when the dedicated users of the first Altair
home computers used toggle switches to enter machine-
language programs. Only later did microcomputers offer
higher level languages, such as Basic and C, and finally
task-oriented, end-user applications.

Programming languages went through a similar evolu-
tion. Assembly languages have statements that correspond
closely to the computer’s machine language. For example,
the following sequence of instructions would add 17 to a
variable named total and store the answer in a variable
called bigtotal.

lda total (load total into
accumulator a)
adda 17.0 (add 17 to the value in

accumulator a)
stoa bigtotal (store accumulator a in
bigtotal)

Each assembly language statement mirrors a CPU oper-
ation. The same operations written in a high-level lan-
guage like Fortran or C, however, would be written in a
form closer to the way a user might think:

bigtotal = total + 17;

Simulating previous technology

A few years after a new technology is
introduced, manufacturers often try to
broaden the market by building interfaces
that simulate a previous technology. The
goal is to reduce or eliminate learning,
making the technology widely available to
people who are unwilling to adapt to a new
system. Users are often reluctant to invest
in learning a new system if they already
know ways to perform a task using old
technology. Wendy Mackay! found that an
extremely common use of customization in
computer applications was to mimic fea-
tures in the previous version of the soft-
ware.

One of the most delightful examples of

an interface based on the preceding tech-
nology is the Phelps tractor, introduced to
farmers in 1901 as a replacement for the
horse. The Phelps tractor could be hitched
to a carriage or wagon, and farmers used a
pair of reins to control the tractor just as they would con-
trol a horse, as Figure 3 shows. The tractor was steered by
pulling on the appropriate rein. When both reins were loos-
ened, it went forward; when they were pulled back, it
slowed down and stopped; and when they were pulled
back harder, it backed up.? Automobiles controlled by steer-
ing wheels and levers had been commercially available in
the United States for about 10 years before Phelps tried to
emulate the horse interface. Presumably the designers of
the Phelps tractor believed that farmers would find it eas-
ier to control than contemporary motor vehicles, with their
unfamiliar levers and knobs.

Farm tractors are not the only example of this approach.
Although computers are sometimes heralded as ushering
in the paperless office, most PC interfaces are now based
on a traditional office metaphor, complete with docu-
ments, folders, filing cabinets, and wastebaskets. In recent
years, attempts to imitate the old office have been taken to
greater extremes, as in Wang’s Freestyle interface® and the
Magic Cap desktop, shown in Figure 4.

A similar example in computer software is Fractal
Design’s Painter, a very successful program that attempts
to faithfully simulate a wide range of paintbrushes, pen-
cils, pens, papers, watercolors, and other tools and mate-
rials of the traditional fine art painter.

Evolving interfaces

We already see examples of this general historical
progress in human-computer interaction. Consider one of
the first computer applications to succeed widely outside
engineering settings: word processing. The first command-
driven text editors were based closely on the underlying
system model and the need to write programs line by line.
Later word processor interfaces were designed to support
user tasks by carefully reflecting an existing technology,
electric typewriters. In 1983, three IBM researchers rec-
ommended: “...we should try to design in more analogies
between the [text] editor and the typewriter.” This strat-

Figure 3. Phelps tractor. The user interface is based on the previ-
ous technology—the horse.

Figure 4. General Magic’s Magic Cap interface is
based on the familiar model of an office.

egy succeeded in expanding the user population, but desk-
top publishing systems have carried the interface and capa-
bilities far beyond the typewriter. Today, hypertext
interfaces exploit computer technology in radically new
ways. Writing itself is evolving.

WORKING WITH LAYERS

In all machines that have manipulatable controls, part
of the device is devoted to connecting the controls to the
underlying mechanism. Even a conceptually simple inter-
face based on the engineering model requires connec-
tions to control points. In early cars, the carburetor
throttle and choke valves were attached to dashboard
levers, a direct mapping that required only simple engi-
neering. In general, connections to control points are nec-

June 1996

essary during development to aid in fine-tuning or debug-
ging, and these connections can be cleaned up in the final
user interface.

The “How much should users see” sidebar addresses a
recurring question in designing multilevel systems: How
much of the underlying mechanism should be revealed to
users?

Basing an interface on a task model complicates engi-
neers’ lives in three ways: First, they must define the task
model. One way to do this is to perform a task analysis,
which often involves user consultation and iterative pro-
totype designs.>8 This can be a major undertaking in itself.
Here we focus on the other two challenges: Understanding
the engineering and task models and linking them.

Understanding models

Engineering complex appliances such as car radios is
often done through a division of labor. A materials engi-
neer knows the properties of the materials used to design
the capacitors, resistors, and other components. A radio
designer knows the properties of these components but
not of the underlying materials. An automobile designer
knows the properties and requirements of the dashboard
radio that will connect to the electrical system, but could
know nothing about radio internals.

Computers also have several levels. The deepest level is
the hardware, including the processor. Few programmers
or software engineers work at this level, which is con-
trolled by programs written in machine language. The
next level is controlled by the more powerful commands
of assemblylanguage, which are automatically translated
into machine language. Next, high-level languages are
built on an assembly language. And toolkits and libraries
of routines are on yet a higher level.

A different engineering model of the system exists at
each level. Clearly, the engineering model at the level at

which most interface developers work will most likely
influence the interface.

The effects of these different levels often seep through
to users. When programmers worked in assembly lan-
guage, for example, error messages sometimes specified
register numbers or hexadecimal memory addresses—
information useful to engineers but perplexing to most
users. As interface developers shifted to higher level lan-
guages, such error messages were sometimes replaced
with messages such as “syntax error,” “string overflow,”
or “disk read error.” Again, these are more informative to
developers than to users. The intrusion of engineering ter-
minology is only one way that the engineering model can
affect the interface.

Linking the models

Now consider the link between task model and engi-
neering model in this multilevel context. If we consider
the most basic mechanism—the hardware—the entire
structure of assemblers, compilers, toolkits, and other soft-
ware constructs is part of the linkage to the task model,
similar to the rods and pulleys in radios. In such a system,
the conceptual distance between the hardware and the
interface based on the task model is great, but no one engi-
neer has to bridge it. Engineers generally work at one level,
but are still aware of the model at the next highest level.
A person creating a library of C routines carries out engi-
neering tasks at the level of the C language, but should
also be aware of the tasks of the programmers who will be
the library’s users.

Thus, the complexity of linking the final users’ task model
and an engineering model depends on a developer’s level.
When the linkage complexity is very great, it can be reduced
by creating a new, higher engineering level. This level can
incorporate elements of the user-task models or allow the
task mode] to be represented more easily. Once the effort

A recurring question in designing multilevel systems is:

How much of the underlying mechanism should be
revealed to: users? Part of the answer is that it depends on
the users’ tasks. If most users are engineers, programmers,
or hobbyists, they might want deeper access, although per-
haps not down to the level of machine code.
One reason to reveal more of the system’s mechanism is
© to help users learn the system faster. Etienne Wenger' dis-
cussed users’:views of systems in terms of black-box versus
glass-box models. A black-box model hides the system mech-
“anism completely. Users learn that certain actions cause the
system to perform in a given-manner, but the connection
between input and output seems arbitrary. A glass-box
~model reveals the mechanism completely. Users can reason
about the relation between input and output.and predict
how different actions will affect the system behavior.
The risk in using the glass-box model is that you can over-

"esti'mateftﬁe amount of information users want and pro-

~ vide information that is primarily of interest to other

_engineers. For example, the Mosaic World Wide Web .

, browser penodlcally announces the number of ’bytes

downloaded” when it establishes a connection. This is not
particularly useful information to-most users;, and it con-
flicts with Mosaic’s model of a“window onto theInternet.”
Because the files are not permanently downloaded, their
size is of limited significance once access is complete.

The greater flexibility of computers can reduce the need
to rely on underlying mechanisms. Radio users have no
intrinsic interest in the frequency at which a station broad-
casts. However, the number and limited broadcast range of -
stations precludes putting names or call Ietters on a dial, so.
listeners have to learn.a station’s frequency in order t6 find
it. With a small amount of memory and processing, devel-
opers could now provide an interface that eliminates the
need torely on that engineering c detai[The same istrue of
telephone numbers—an engmeermg de’caxl that automatic
dialers can remove from the teiephone m’terface '

Reference : o o G
1. E. Wenger, Glass-Box Technology' Mergmg Learnmg and 'y
Doing, IRL Research Abstract 1, !nstltu’ce for Research on
Learnmgl Palo Alto, Cahf 198

Computer

c/sObject

[

This is basically a barbecue sauce. Coating
or barbequeing vegs and other squash has
become very popular in the West lately.
Charting Paper
Document Edit View

Squash

All classes ' ¢/sClass c/sApp
in PenPoint
PenPoint c/sAppMagr
application
classes
theBookshelf pp pp
Notebook contents
Document Edit Create View Show Sort j
Name my l csNBApp
B:irst Elxperience Notebook
-
[Charting Paper........coovvvvvvvcsccriore e 6
D New Product Ideas
Document Edit_Insert Case Format Notebook c/sSectApp
Southwestern Curry sauce table and contents

sections

Application
classes

(s [osusniddsa o] Bupeei) sded uniecs)

Eggplant paste
We really need a new name for this one, but

e}
0

Heid . Prats

0.0

in Out

ooood

Applications

Figure 5. The class hierarchy of the PenPoint application is reflected in its interface. Each item in the user
interface directly corresponds to a program object in the code.

of creating a new language toolkit or environment is over,
engineers working at the new level can more easily imple-
ment the interface, the link to the users’ task model.

This is precisely how levels are built up over time.
Engineers and programmers work at each new level, but
the process is driven by the need to implement the func-
tionality and interfaces dictated by users’ tasks. Each new
level reduces the gap between the highest engineering
model and the task model those engineers will support.

Reducing the gap might simplify the engineer’s task only
temporarily. By providing greater efficiency, a new level can
encourage new features and functions to support more
numerous and complex tasks. These lead to more complex
task models, increasing the complexity of the interface-
mechanism linkage. Eventually, this complexity could
become great enough to justify the effort of creating yet
another level. We have seen no reason to suppose that this
accumulation of levels will stop.

Changes can also propagate down through engineering
levels. New, higher level languages favor the adoption of
different assembly languages. One benefit of the shift to
RISC architectures is that developers can now better
understand program demands.

LOOKING TO THE FUTURE

Gerhard Fischer” has noted the historical sequence of
higher level engineering in programming, and sees his work
on “high functionality design environments” as a continua-
tion of this sequence. The notion is that the increasingly
strong functionality and interface demands within a specific
application domain make it more efficient to abandon
general-purpose languages and environments in favor of spe-
cialized environments created for specific domains. A design
environment to support network designers and administra-
tors, for example, can include domain-specific information
and more sophisticated advice for developers working within
thatdomain. This is an extension of trends already evidentin
the existence of higher level languages and libraries that favor
one or another broad class of applications.

Object-oriented languages are another approach that
could reduce the gap between developer and task model.
Objects meaningful to users can be directly represented
in the language, allowing developers (and perhaps users
themselves) to manipulate the representations to match
user requirements as they evolve. Figure 5 shows an exam-
ple of this. The hierarchy of the application directly reflects
the class hierarchy.

June 1996

Mastery of tool versus mastery of task

The shift from engineering to task models reflects the
fact that, for most users, the interface is a means to an end.
1t’s like a blind person’s cane. The cane handle is the inter-
face to the tool; the tip of the cane is the interface to the
world. The handle is important, but once it is mastered,
the activity at the tip of the cane is more important. As
users master a tool, they draw on prior experience. Later,
when they have become more comfortable with the tool,
their interest shifts toward mastering the tasks the tool is
used for. Interface designers can follow this shift.

Of course, successful applications have many users, not
all of whom are in the same place at the same time. A
developer can’t please everyone. It’s great to provide some
support for novices, experts, casual users, power users,
the enthusiastic, and the reluctant, but it’s also expensive.
Developers must estimate which users are most important
at a given time. It’s dangerous to assume that knowledge-
able enthusiasts are most important because you are a
knowledgeable enthusiast, or that novices are most impor-
tant because novices participated in a usability test, or that
the current interface design is adequate for tomorrow
because it is doing well today.

ADVICE FOR DEVELOPERS

Often, the path of least resistance is to model the inter-
face on the mechanism. This is familiar to the developers;
it’s what they themselves usually want to work with.
What'’s more, they find encouragement in often-repeated
guidelines:

¢ “Build a consistent interface.” This can be good
advice, but “consistent” is often interpreted to mean
consistent with the underlying engineering model,
the software architecture.

“Strive for simplicity.” Another good goal, but it is
generally simpler and more elegant to base the inter-
face on the underlying mechanism, which is not
always a good idea.

We offer some other advice:

* Place yourselfin the historical evolution. Examine the
current state of your interface. Take a good look at those
architecture diagrams. How closely does the interface
mirror the underlying system? Identify similar tech-
nologies. How many of their features are reflected in
your interface? Recall the last time you examined work-
place practices at sites using your systems. Has your
interface evolved since then? Remember, it is not nec-
essarily good or bad to be at any one point in this pro-
gression. The exercise is to first figure out where you
are, and then ask where you should be.

¢ Determine whereyou should be. Most systems are not
entirely new, but novelty is more widespread in soft-
ware than in most fields. Furthermore, novelty is in
the eye of the beholder. Marketing a familiar kind of
product to a completely new audience requires
rethinking its interface. Not all novel applications are
designed to be used primarily by engineers or hob-
byists, but some are. Make a realistic appraisal of the
early adopters. If they value control, consider basing

Computer

your interface on an engineering model. Some devel-
opers think their system will be used as-is, but in fact
their system will be modified by other programmers.
In these cases the original developers should provide
tools that enable the programmers to access the
underlying system. On the other hand, if the prospec-
tive users are unfamiliar with a system they will use
to do their work, consider using a task model, keep-
ing inmind that the task will change when a new sys-
tem is introduced. In these situations, basing the
interface on a familiar technology or practice can be
the surest route to acceptance.

If prospective users are either more computer-savvy

or have experience with an earlier version or a similar
application, it is crucial to understand the work activ-
ity. These interfaces must move beyond familiar tech-
nologies and systems, even if this requires engineering
changes. Often, you might want to design for a range
of users, but this complicates the situation. Multiple
interfaces, while possible, add complexity for devel-
opers and users alike. It is worthwhile to make a strong
effort to identify the key user population.
Pay attention to trade-offs. When developing systems
you must balance competing pressures. An interface
design is influenced by both tasks and constraints,
not to mention schedule, budgets, marketing, and
numerous other factors.®

IN GENERAL, AN INTERFACE BASED ON the engineering model
allows full access to the system’s capabilities, whereas an
interface based on the task model is easier to learn and
use but provides access to only a subset of the system capa-
bilities. In weighing the costs and benefits of each
approach, you must look beyond the immediate task to
consider the broader context of use. For example, appli-
cations intended for people who infrequently use a system
must focus on ease of learning and remembering. This
implies that interface design should be based on the users’
existing task model, even if this increases the complexity
of the underlying system design or decreases its power.
The system mechanism will not be relevant to infrequent
users, so it should be hidden as much as possible.

On the other hand, it is reasonable to expect frequent
users to invest more time and effort in learning a new sys-
tem if—and this is a big if—they see major benefits in
adapting to the system. In particular, gaining an aesthetic
appreciation of the engineering model is not seen as a
major benefit by most users. As an example of how fre-
quency of use affects interface design, information kiosks
placed in a public shopping mall must rely on very simple
user task models, such as “point at what you want,”
whereas information systems used on a daily basis can pro-
vide a powerful database query language.

A good case can be made for including on the design
team some individuals—perhaps prospective users—who
remain naive about the underlying system architecture.
Finally, users’ tasks in broad work settings must be con-
tinually examined, for they will change in parallel with
technological change and provide opportunities for new
interface designs. Interface designers will play an impor-
tant role in the foreseeable future. 1

Acknowledgments

We thank Jakob Nielsen, Don Norman, and the review-
ers for helpful comments on earlier drafts.

References

1. W. Mackay, “Triggers and Barriers to Customizing Software,”

Proc. CompuOter-Human Interface ’91, ACM Press, New York,
1991, pp. 153-160.

2. F.Clymer, Treasury of Early American Automobiles, McGraw-
Hill, New York, 1950.

3. S.R.Levine and S.F. Ehrlich, “The Freestyle System: A Design
Perspective,” in Human-Machine Interactive Systems, A.
Klinger, ed., Plenum, New York, 1991, pp. 3-21.

4. R.L. Mack, C.H. Lewis, and J.M. Carroll, “Learning to Use a
Word Processor: Problems and Prospects,” ACM Trans. Office
Information Systems, July 1983, pp. 254-271.

5. J.D. Gould, “How to Design Usable Systems,” in Readings in
Human-Computer Interaction: Toward the Year 2000, R.
Baecker et al., eds., Morgan Kaufmann, San Mateo, 1995.

6. Design at Work: Cooperative Design of Computer Systems, J.
Greenbaum and M. Kyng, eds., Lawrence Erlbaum, Engle-
wood Cliffs, N.J., 1991.

7. G. Fischer, “Domain-Oriented Design Environments,” Auto-
mated Software Eng., June 1994, pp. 177-203.

8. J. Grudin, “Systematic Sources of Suboptimal Interface
Design in Large Product Development Organizations,”
Human-Computer Interaction, No. 2, 1991, pp. 147-196.

Donald R. Gentner is a senior staff engineer at SunSoft,
a Sun Microsystems business, where he designs human inter-
faces for end-user computer applications and explores new
directions for computer-human interfaces that embrace the
Internet. Previously, he designed human interfaces at Apple
Computer and Philips Laboratories, and conducted research
in cognitive psychology at the University of California, San
Diego. He received a BS in chemistry from Rensselaer Poly-
technic Institute and a PhD in physical chemistry from the
University of California, Berkeley.

Contact Gentner at SunSoft, 2550 Garcia Ave.,, MTV21-225,
Mountain View, CA 94043-1100; don.gentner@sun.com.

Jonathan Grudin is an associate professor of informa-
tion and computer science at the University of California,
Irvine. He previously taught at Aarhus University in Den-
mark, developed software at Wang Laboratories, and car-
ried out research at MCC. He is in the Computers,
Organizations, Policy and Society group at Irvine, where his
interests include computer-supported cooperative work and
human-computer interaction. He received a BA in mathe-
matics-physics from Reed College, an MS in mathematics
from Purdue University, and a PhD in cognitive psychology
from University of California, San Diego.

Contact Grudin at Information and Computer Science
Department, University of California, Irvine, Irvine, CA
92717-3425; grudin@ics.uci.edu.

Scheduling Divisible
Loads in Parallel and

Distributed Systems

by Veeravalli Bharadwaj, Debasish Ghose,
Venkataraman Mani, and
Thomas G. Robertazzi

Provides an in-depth study concerning
a class of problems in the general area
of load sharing and balancing in paral-

Parallel Computers
Theory and Practice

edited by Thomas L. Casavant,
Pavel Tvrdik, and Frantisek Plasil

Covers the important issues inherent to
the design of effectively programmable
parallel computing machines and illus-
trates the difficult tradeoffs in the de-
sign of their hardware and software
components. The text is a collaboration

of the leading experts in the field of par-
allel computing. It provides an overview of the current state-
of-the-art, details the historical progression leading to the cur-
rent state, and explains the latest developments and future
trends. The book, containing 12 original papers, concentrates
on explanations of fundamental problems and on discussions
of various approaches to overcome these problems.

350 pages. May 1995. Hardcover. ISBN 0-8186-5162-8.
Catalog # BP05162 — $43.00 Members / $54.00 List

lel and distributed systems. The authors

present the design and analysis of load
distribution strategies for arbitrarily divisible loads in multi-
processor/multicomputer systems subject to the system con-
straints in the form of communication delays. In particular,
two system architectures -- single-level tree or star network,
and linear network -- are thoroughly analyzed.

216 pages. August 1995, Hardcover. ISBN 0-8186-7521-7.
Catalog # BP07521 — $30.00 Members / $35.00 List

COMPUTER

SOCIETY)

